Symmetry of Extended Representations of Mix Graphs and Sum-Product Graphs

نویسندگان

  • Robert E. Jamison
  • Alan Sprague
چکیده

This paper is concerned with two classes of graphs that generalize φ-tolerance chain graphs using the rank tolerance model introduced by Golumbic and Jamison in [3]. In a rank-tolerance representation of a graph, each vertex is assigned two parameters: a rank, which represents the size of that vertex, and a tolerance which represents an allowed extent of conflict with other vertices. Two vertices are adjacent if and only if their joint rank exceeds (or equals) their joint tolerance. In their study, Golumbic and Jamison restrict ranks and tolerances to be positive reals. In certain cases, such as when the tolerance is sum and the ranks is product, it is advantageous to allow all real values. This permits certain transformations which facilitate the study of the representations. We describe the general theory, point out the pivotal place of sum-product graphs and a related class of mix graphs and discuss the special transformations and their usefulness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

Extended graphs based on KM-fuzzy metric spaces

This paper,  applies the concept  of KM-fuzzy metric spaces and  introduces a novel concept of KM-fuzzy metric  graphs based on KM-fuzzy metric spaces.  This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to  extend   the concept of KM-fuzzy metric spaces to  a larger ...

متن کامل

Just chromatic exellence in fuzzy graphs

A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...

متن کامل

On the variable sum exdeg index and cut edges of graphs

The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number,  du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.

متن کامل

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006